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Why Cooperative AI Matters?
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Why Cooperative AI Matters: Enhancing Intelligent Multi-Agent Systems

Autonomous Driving E-Commerce

UAV Surveillance Smart Grids

As AI systems become 
more widely deployed, 
they will inevitably 
interact with each other 
across a broader range of 
domains.
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Why Cooperative AI Matters: Avoiding Disastrous Outcomes

A bizarre domino effect triggered 
by high-frequency trading (HFT) 
algorithms erased almost 1 
trillion in market value.

The 2010 Flash Crash
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Cooperation Problems
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Alignment Multi-agent

Even if each agent individually is well aligned with human values, they 
may fail to cooperate due to mixed interests.

Cooperation Problems
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Understanding and communication alleviate cooperation 
problems in low conflict level

Fully Cooperative Games Trust Dilemma
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Challenges of Communication in Highly Conflicting Games

Regardless of the opponent's statements or actions, each rational 
prisoner will choose to defect.
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What If They Can Make Conditional 
Commitments?
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Grim Trigger

Conditional Commitments in Iterated Prisoner’s Dilemma

Tit-for-Tat

I will cooperate as long as you do. 
However, if you defect even once, I will 

permanently switch to defection.

I will begin by cooperating and will 
always mirror your last action.
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How to Design Smart Adpative 
Commitments?

11



Methodology
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Markov Commitment Games
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Markov Commitment Games
Notation

MCG = (𝒩, 𝒮, 𝒯, (ℳi, 𝒞i, 𝒜i, ℛi)i∈𝒩, γ) .
• : The set of agents (players) in the game, indexed by .


• : The state space, representing all possible states of the environment.


• : The proposal space of agent . 


• : The commitment space of agent .


• : The action space of agent , the joint action space is .


• : The reward function of agent .


• : The environment transition function, which satisfies the Markov property and the 
stationarity condition, i.e., .

𝒩 i ∈ 𝒩

𝒮

ℳi i

𝒞i i

𝒜i i 𝒜 = (𝒜i)i∈𝒩

ℛi : 𝒮 × 𝒜 → ℝ i

𝒯 : 𝒮 × 𝒜 → Δ(𝒮)
𝒯(st+1 |st, at) = 𝒯(st+1 |st, at, . . . , s0, a0) = 𝒯(s′￼|s, a)

If we consider only a single agent's 
action in a multi-agent 

environment, the environment can 
become non-stationary from that 

agent's perspective. 
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Markov Commitment Games
Notation

MCG = (𝒩, 𝒮, 𝒯, (ℳi, 𝒞i, 𝒜i, ℛi)i∈𝒩, γ) .

In an MCG, each agent  has three decisions to make at each time step: 


• Proposal policy .


• Commitment policy .


• Action policy, .

i

ϕi
ηi : 𝒮 → Δ(ℳi)

ψ i
ζi : 𝒮 × ℳ → Δ(𝒞i)

πi
θi : 𝒮 → Δ(𝒜i)
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Mutual Cooperation Becomes an Equilibrium in Prisoner’s Dilemma

Proposition 4.1. 

Mutual cooperation is a Pareto-dominant Nash equilibrium in the MCG 
of the Prisoner's Dilemma. 

I will propose cooperation. 
I will commit to a joint proposal 
where my coplayer proposes 
cooperation, and reject otherwise.  
I will choose defection if there is no 
mutual agreement.  
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How to Learn Smart Adpative 
Commitments?
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Differentiable Commitment Learning

max
ηi,ζi,θi

Vi
ϕ,ψ,π(s) = 𝔼ϕ,ψ,π[

∞

∑
k=t

γk−tri
k+1 |st = s]

Objective

Environment dynamics are influenced by all agents' policies

Direct Effect Agent  Policiesi Agent  UtilityiBP

Indirect Effect Agent  
Proposal Policy

i
Agent  UtilityiAgent  Commitment 

Policies
−iBP BP
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Lemma 5.1. 

Given proposal policy , commitment policy  and the action policy  of each agent  in an MCG, the 
gradients of the value function  w.r.t. , ,  are

ϕi
ηi ψ i

ζi πi
θi i

Vi
ϕ,ψ,π(s) θi ζi ηi

∇θiVi
ϕ,ψ,π(s) ∝ 𝔼x∼ρϕ,ψ,π,m∼ϕ,c∼ψ,a∼π[(1 − 1(c = 1))Qi

ϕ,ψ,π(x, a)∇θilog πi(ai |x)],

∇ζiVi
ϕ,ψ,π(s) ∝ 𝔼x∼ρϕ,ψ,π,m∼ϕ,c∼ψ,a∼π[[1(c = 1)Qi

ϕ,ψ,π(x, m) + (1 − 1(c = 1))Qi
ϕ,ψ,π(x, a)]∇ζilog ψ i(ci |x, m)

+[Qi
ϕ,ψ,π(x, m) − Qi

ϕ,ψ,π(x, a)]∏
k≠i

1(ck = 1) ⋅ ∇ζi1(ci = 1)],

∇ηiVi
ϕ,ψ,π(s) ∝ 𝔼x∼ρϕ,ψ,π,m∼ϕ,c∼ψ,a∼π[[1(c = 1)Qi

ϕ,ψ,π(x, m) + (1 − 1(c = 1))Qi
ϕ,ψ,π(x, a)] ⋅ (∇ηilog ϕi(mi |x) + ∑

j

∇ηilog ψ j(cj |x, m))

+∑
j

∏
k≠j

1(ck = 1)[Qi
ϕ,ψ,π(x, m) − Qi

ϕ,ψ,π(x, a)] ⋅ ∇ηi1(cj = 1)],

where Qi
ϕ,ψ,π(s, a) = 𝔼ϕ,ψ,π[

∞

∑
k=t

γk−tri
k+1 |st = s, at = a] .
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Incentive-Compatible Constraints Encourage Mutually Beneficial Proposals

Agents may still have the equilibrium selection problem when multiple equilibria exist.

𝔼m∼ϕ[Qi
ϕ,ψ,π(s, m)] ≥ 𝔼a∼π[Qi

ϕ,ψ,π(s, a)] ∀ i .Incentive-Compatible Constraints

Mutually Beneficial Deals Do Not Exist ϕi(s) = πi(s), ∀i

𝔼m∼ϕ[Qi
ϕ,ψ,π(s, m)] = 𝔼a∼πU

[Qi
ϕ,ψ,π(s, a)], ∀iFeasible Solutions Always Exist
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Incentive-Compatible Constraints Encourage Mutually Beneficial Proposals

Agents may still have the equilibrium selection problem when multiple equilibria exist. 

𝔼m∼ϕ[Qi
ϕ,ψ,π(s, m)] ≥ 𝔼a∼π[Qi

ϕ,ψ,π(s, a)] ∀ iIncentive-Compatible Constraints

Mutually Beneficial Deals Exist Penalize Agent for Proposing Outcomes Worse 
than Independent Actions for All

Agents Are Incentivized to Offer Deals 
Acceptable to Others

Encourage Mutually Beneficial 
Proposals
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Integrate Incentive-Compatible Constraints into the Objective

ηi ← ηi + ∇ηiVi
ϕ,ψ,π(s) + λ∇ηi ∑

j

min{0,𝔼m∼ϕ[Qj
ϕ,ψ,π(s, m)] − 𝔼a∼π[Qj

ϕ,ψ,π(s, a)]} .

๏The incentive-compatible constraints are applied to the proposal policy only. 

๏If a proposal is acceptable to others but does not benefit the ego agent, the 
commitment policy is trained to reject non-profitable proposals, 
reinforcing self-interest.

Improve expected self-return Increase the likelihood that its proposals are accepted by others
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Empirical Results
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Evaluated Methods
Centralized DCL: have full access to 
others’ actual policies and critics.


• DCL: .


• DCL-IC: .


Decentralized DCL: need to estimate 
others’ actual policies and critics.


• DecentralizedDCL: .


• DecentralizedDCL-IC: .

λ = 0

λ = 1

λ = 0

λ = 1

IPPO: each agent was trained 
independently with the proximal policy 
optimization (PPO).


Mediated-MARL: altruistic joint planner 
was trained to maximize the utilitarian 
social welfare.


MOCA: Each agent was trained to 
maximize self-interest, with a 
learnable transfer payment that 
directly modifies agents’ rewards.
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DCL agents strategically accept beneficial agreements while 
rejecting disadvantageous ones.

Resilient against malicious agents who always propose 
defection.
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Sequential Social Dilemma
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Repeated Purely Conflicting Game

extended DCL with mega-step commitments

Agents cannot establish one-step 
mutually beneficial agreements.

If agents can commit to actions over 
multiple steps, both can achieve 
positive long-term returns by committing 
to a tit-for-tat agreement.

28



Repeated Purely Conflicting Game
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Take-home Messages
• Agents can achieve mutually beneficial outcomes by voluntarily committing to 

proposed actions in MCGs.


• DCL enables agents to learn strategic commitments by differentiating through 
self policies (direct effect) and others’ policies (indirect effect).


• Incentive-compatible learning accelerates agreement formation by 
encouraging agents to propose agreements that will be accepted by others.


• Mega-step commitments can enhance long-term cooperation in some 
repeated purely competitive environments.
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