

Learning to Negotiate via Voluntary Commitment

Shuhui Zhu

University of Waterloo & Vector Institute
shuhui.zhu@uwaterloo.ca

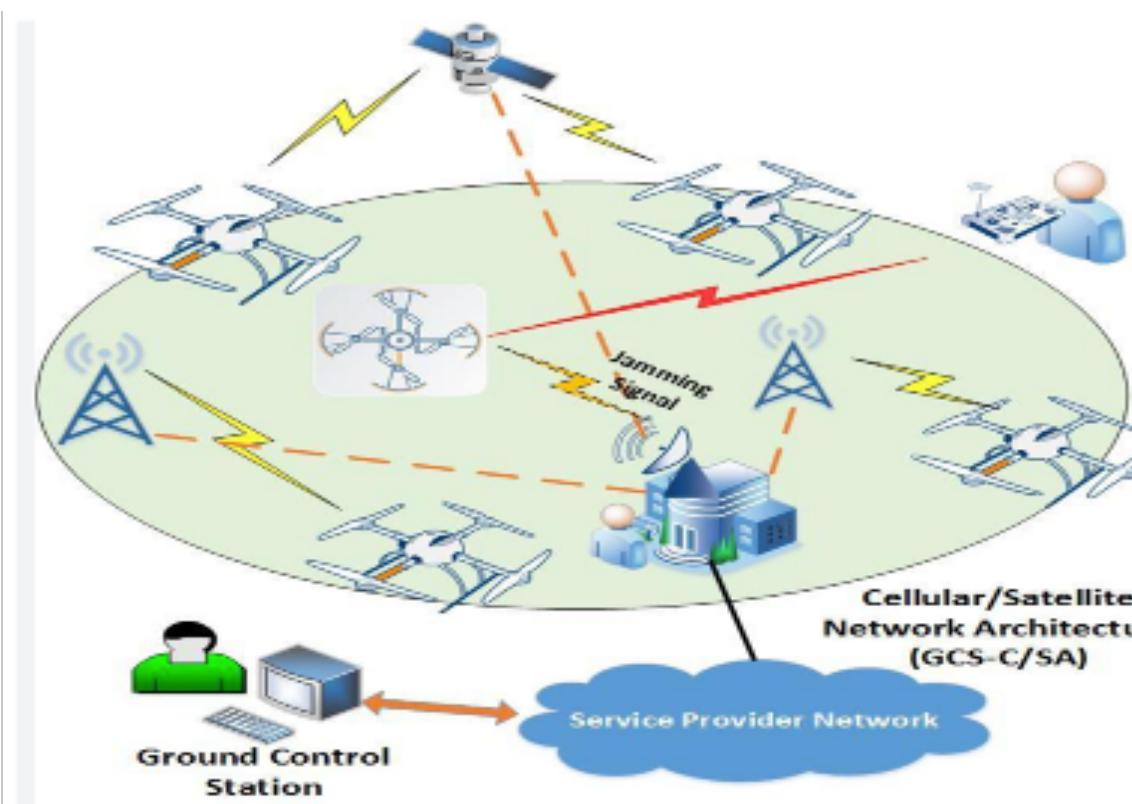
Why Cooperative AI Matters?

Why Cooperative AI Matters: Enhancing Intelligent Multi-Agent Systems

As AI systems become more widely deployed, **they will inevitably interact with each other** across a broader range of domains.

Autonomous Driving

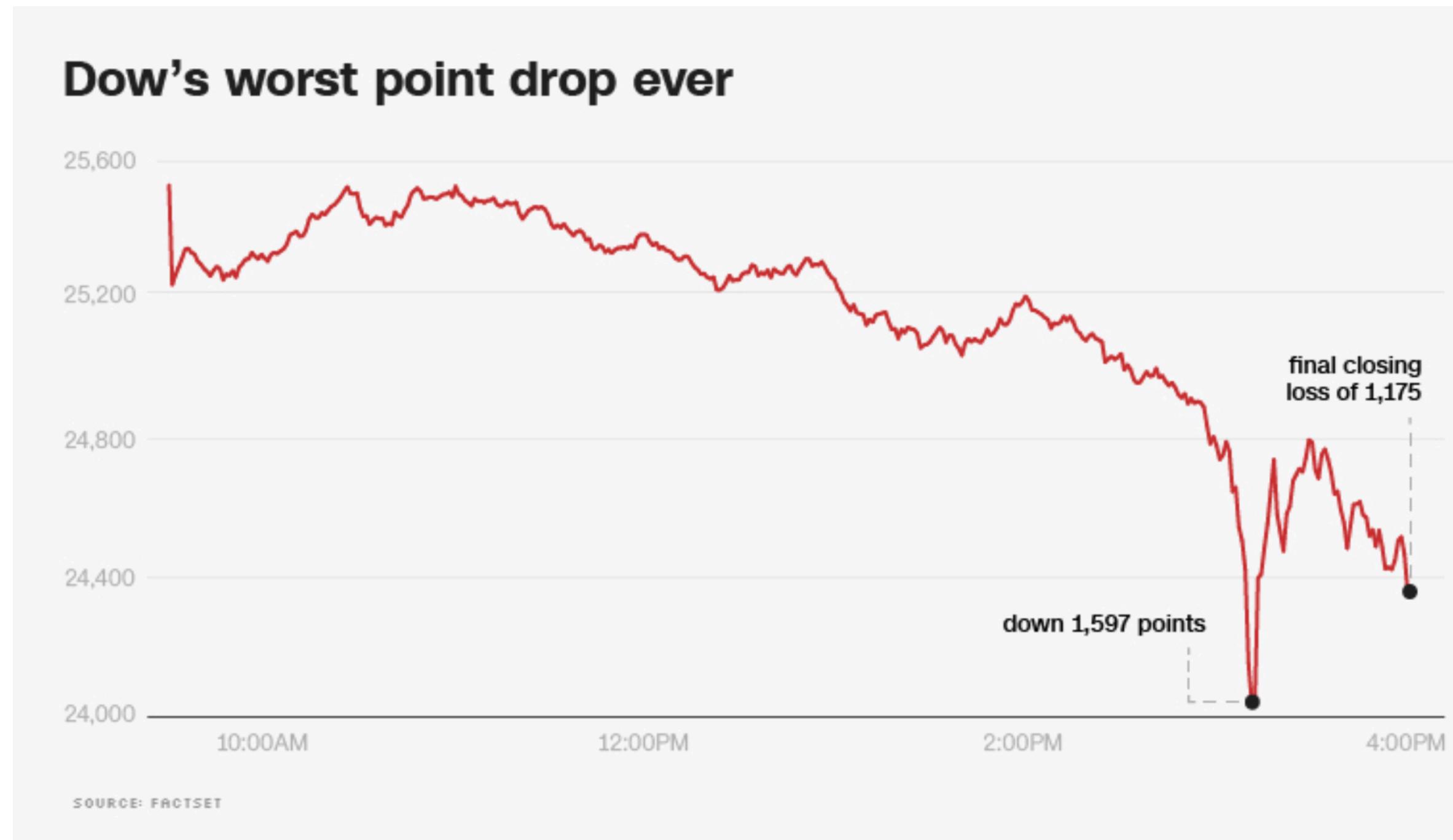
E-Commerce



UAV Surveillance

Smart Grids

Why Cooperative AI Matters: Avoiding Disastrous Outcomes

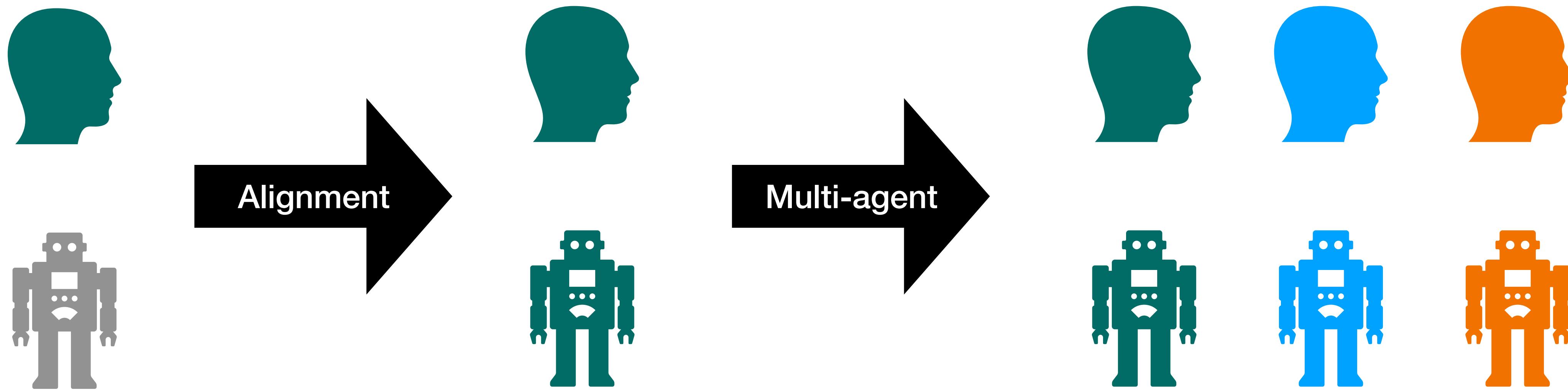


The 2010 Flash Crash

A bizarre domino effect triggered by **high-frequency trading (HFT) algorithms** erased almost **1 trillion** in market value.

Cooperation Problems

Cooperation Problems



Even if each agent individually is well aligned with human values, they may **fail to cooperate** due to **mixed interests**.

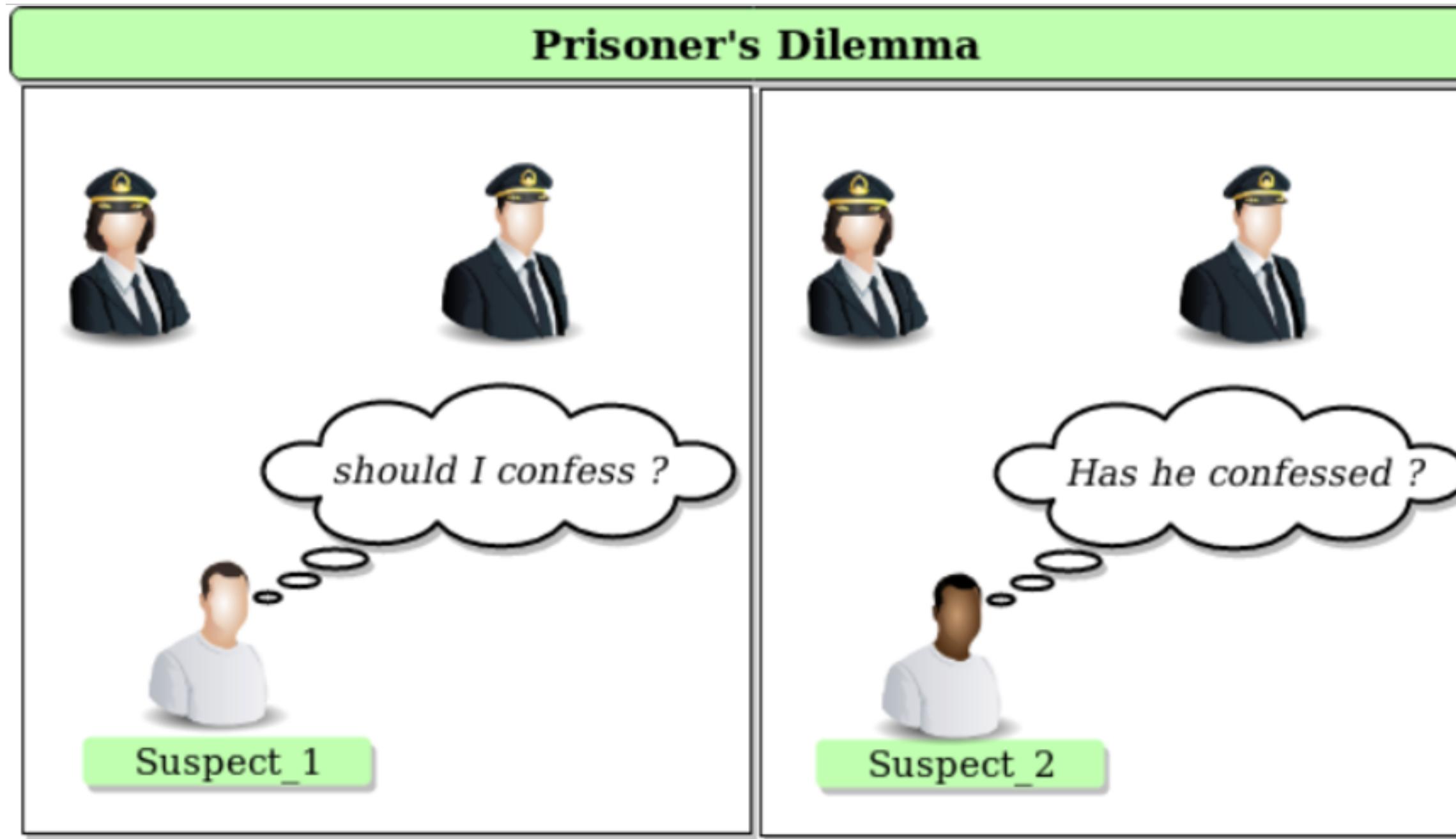
Understanding and communication alleviate cooperation problems in low conflict level

Fully Cooperative Games

		HUNTER 1	
		STAG	HARE
HUNTER 2	STAG	5, 5	0, 2
	HARE	2, 0	1, 1

Trust Dilemma

Challenges of Communication in Highly Conflicting Games



	C	D
C	(-1,-1)	(-3,0)
D	(0,-3)	(-2,-2)

Table 1: Prisoner's dilemma

Regardless of the opponent's statements or actions, each rational prisoner will choose to **defect**.

What If They Can Make Conditional Commitments?

Conditional Commitments in Iterated Prisoner's Dilemma

Grim Trigger

I will cooperate as long as you do. However, if you defect even once, I will **permanently switch to defection**.

Tit-for-Tat

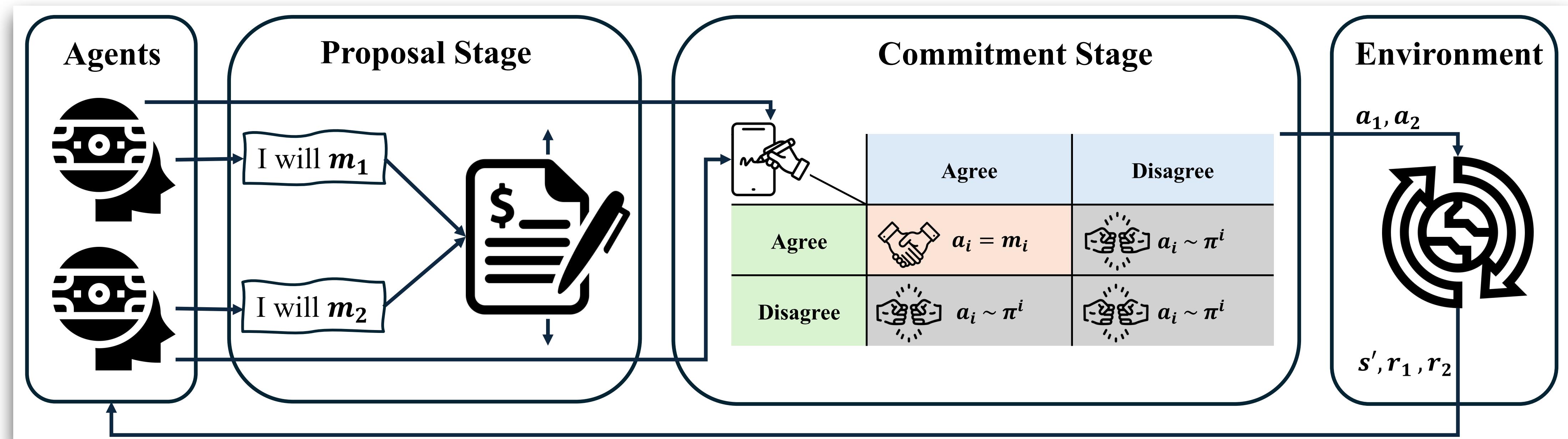
I will begin by cooperating and will always **mirror your last action**.

How to Design Smart Adaptive Commitments?

Methodology

Markov Commitment Games

Outline



Markov Commitment Games

Notation

$$MCG = (\mathcal{N}, \mathcal{S}, \mathcal{T}, (\mathcal{M}^i, \mathcal{C}^i, \mathcal{A}^i, \mathcal{R}^i)_{i \in \mathcal{N}}, \gamma).$$

- \mathcal{N} : The set of agents (players) in the game, indexed by $i \in \mathcal{N}$.
- \mathcal{S} : The state space, representing all possible states of the environment.
- \mathcal{M}^i : The proposal space of agent i .
- \mathcal{C}^i : The commitment space of agent i .
- \mathcal{A}^i : The action space of agent i , the joint action space is $\mathcal{A} = (\mathcal{A}^i)_{i \in \mathcal{N}}$.
- $\mathcal{R}^i : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$: The reward function of agent i .
- $\mathcal{T} : \mathcal{S} \times \mathcal{A} \rightarrow \Delta(\mathcal{S})$: The environment transition function, which satisfies the Markov property and the stationarity condition, i.e., $\mathcal{T}(s_{t+1} | s_t, \mathbf{a}_t) = \mathcal{T}(s_{t+1} | s_t, \mathbf{a}_t, \dots, s_0, \mathbf{a}_0) = \mathcal{T}(s' | s, \mathbf{a})$.

If we consider only a single agent's action in a multi-agent environment, the environment can become **non-stationary** from that agent's perspective.

Markov Commitment Games

Notation

$$MCG = (\mathcal{N}, \mathcal{S}, \mathcal{T}, (\mathcal{M}^i, \mathcal{C}^i, \mathcal{A}^i, \mathcal{R}^i)_{i \in \mathcal{N}}, \gamma).$$

In an MCG, each agent i has three decisions to make at each time step:

- Proposal policy $\phi_{\eta^i}^i : \mathcal{S} \rightarrow \Delta(\mathcal{M}^i)$.
- Commitment policy $\psi_{\zeta^i}^i : \mathcal{S} \times \mathcal{M} \rightarrow \Delta(\mathcal{C}^i)$.
- Action policy, $\pi_{\theta^i}^i : \mathcal{S} \rightarrow \Delta(\mathcal{A}^i)$.

Mutual Cooperation Becomes an Equilibrium in Prisoner's Dilemma

Proposition 4.1.

*Mutual cooperation is a **Pareto-dominant Nash equilibrium** in the MCG of the Prisoner's Dilemma.*

	C	D
C	(-1, -1)	(-3, 0)
D	(0, -3)	(-2, -2)

I will propose cooperation.
I will commit to a joint proposal where my coplayer proposes cooperation, and reject otherwise.
I will choose defection if there is no mutual agreement.

Table 1: Prisoner's dilemma

How to **Learn** Smart Adpative Commitments?

Differentiable Commitment Learning

Objective

$$\max_{\eta^i, \zeta^i, \theta^i} V_{\phi, \psi, \pi}^i(s) = \mathbb{E}_{\phi, \psi, \pi} \left[\sum_{k=t}^{\infty} \gamma^{k-t} r_{k+1}^i \mid s_t = s \right]$$

Environment dynamics are influenced by all agents' policies

Direct Effect

Agent i Policies

BP

Agent i Utility

Indirect Effect

Agent i
Proposal Policy

BP

Agent $-i$ Commitment
Policies

BP

Agent i Utility

Lemma 5.1.

Given proposal policy $\phi_{\eta^i}^i$, commitment policy $\psi_{\zeta^i}^i$ and the action policy $\pi_{\theta^i}^i$ of each agent i in an MCG, the gradients of the value function $V_{\phi, \psi, \pi}^i(s)$ w.r.t. θ^i , ζ^i , η^i are

$$\nabla_{\theta^i} V_{\phi, \psi, \pi}^i(s) \propto \mathbb{E}_{x \sim \rho_{\phi, \psi, \pi}, \mathbf{m} \sim \phi, \mathbf{c} \sim \psi, \mathbf{a} \sim \pi} \left[\left(1 - \mathbf{1}(\mathbf{c} = \mathbf{1}) \right) Q_{\phi, \psi, \pi}^i(x, \mathbf{a}) \nabla_{\theta^i} \log \pi^i(a^i | x) \right],$$

$$\begin{aligned} \nabla_{\zeta^i} V_{\phi, \psi, \pi}^i(s) &\propto \mathbb{E}_{x \sim \rho_{\phi, \psi, \pi}, \mathbf{m} \sim \phi, \mathbf{c} \sim \psi, \mathbf{a} \sim \pi} \left[\left[\mathbf{1}(\mathbf{c} = \mathbf{1}) Q_{\phi, \psi, \pi}^i(x, \mathbf{m}) + \left(1 - \mathbf{1}(\mathbf{c} = \mathbf{1}) \right) Q_{\phi, \psi, \pi}^i(x, \mathbf{a}) \right] \nabla_{\zeta^i} \log \psi^i(c^i | x, \mathbf{m}) \right. \\ &\quad \left. + \left[Q_{\phi, \psi, \pi}^i(x, \mathbf{m}) - Q_{\phi, \psi, \pi}^i(x, \mathbf{a}) \right] \prod_{k \neq i} \mathbf{1}(c^k = 1) \cdot \nabla_{\zeta^i} \mathbf{1}(c^i = 1) \right], \end{aligned}$$

$$\begin{aligned} \nabla_{\eta^i} V_{\phi, \psi, \pi}^i(s) &\propto \mathbb{E}_{x \sim \rho_{\phi, \psi, \pi}, \mathbf{m} \sim \phi, \mathbf{c} \sim \psi, \mathbf{a} \sim \pi} \left[\left[\mathbf{1}(\mathbf{c} = \mathbf{1}) Q_{\phi, \psi, \pi}^i(x, \mathbf{m}) + \left(1 - \mathbf{1}(\mathbf{c} = \mathbf{1}) \right) Q_{\phi, \psi, \pi}^i(x, \mathbf{a}) \right] \cdot \left(\nabla_{\eta^i} \log \phi^i(m^i | x) + \sum_j \nabla_{\eta^i} \log \psi^j(c^j | x, \mathbf{m}) \right) \right. \\ &\quad \left. + \sum_j \prod_{k \neq j} \mathbf{1}(c^k = 1) \left[Q_{\phi, \psi, \pi}^i(x, \mathbf{m}) - Q_{\phi, \psi, \pi}^i(x, \mathbf{a}) \right] \cdot \nabla_{\eta^i} \mathbf{1}(c^j = 1) \right], \end{aligned}$$

where $Q_{\phi, \psi, \pi}^i(s, \mathbf{a}) = \mathbb{E}_{\phi, \psi, \pi} \left[\sum_{k=t}^{\infty} \gamma^{k-t} r_{k+1}^i \mid s_t = s, \mathbf{a}_t = \mathbf{a} \right]$.

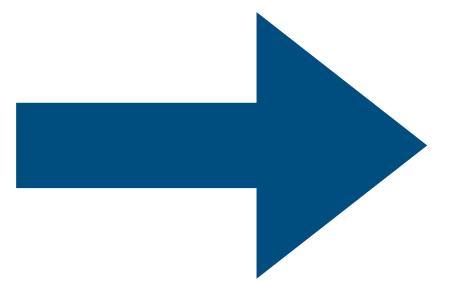
Incentive-Compatible Constraints Encourage Mutually Beneficial Proposals

Agents may still have the **equilibrium selection problem** when multiple equilibria exist.

Incentive-Compatible Constraints

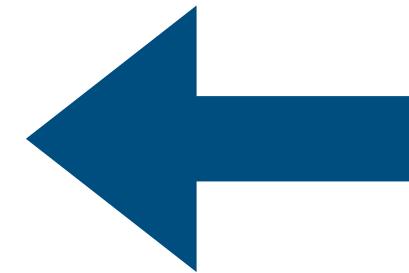
$$\mathbb{E}_{\mathbf{m} \sim \phi}[Q_{\phi, \psi, \pi}^i(s, \mathbf{m})] \geq \mathbb{E}_{\mathbf{a} \sim \pi}[Q_{\phi, \psi, \pi}^i(s, \mathbf{a})] \quad \forall i.$$

Mutually Beneficial Deals Do Not Exist



$$\phi^i(s) = \pi^i(s), \forall i$$

Feasible Solutions Always Exist



$$\mathbb{E}_{\mathbf{m} \sim \phi}[Q_{\phi, \psi, \pi}^i(s, \mathbf{m})] = \mathbb{E}_{\mathbf{a} \sim \pi_U}[Q_{\phi, \psi, \pi}^i(s, \mathbf{a})], \forall i$$

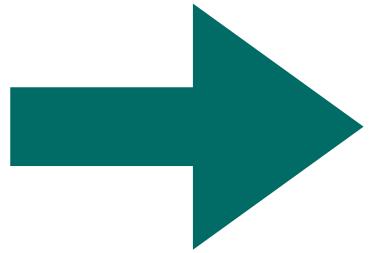
Incentive-Compatible Constraints Encourage Mutually Beneficial Proposals

Agents may still have the **equilibrium selection problem** when multiple equilibria exist.

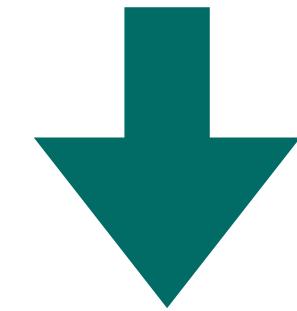
Incentive-Compatible Constraints

$$\mathbb{E}_{\mathbf{m} \sim \phi}[Q_{\phi, \psi, \pi}^i(s, \mathbf{m})] \geq \mathbb{E}_{\mathbf{a} \sim \pi}[Q_{\phi, \psi, \pi}^i(s, \mathbf{a})] \quad \forall i$$

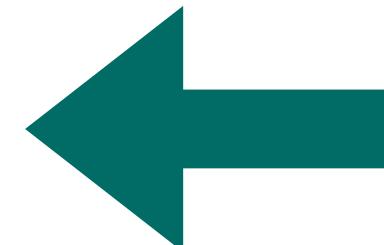
Mutually Beneficial Deals Exist



Penalize Agent for Proposing Outcomes Worse than Independent Actions for All



Encourage Mutually Beneficial Proposals



Agents Are Incentivized to Offer Deals Acceptable to Others

Integrate Incentive-Compatible Constraints into the Objective

$$\eta^i \leftarrow \eta^i + \boxed{\nabla_{\eta^i} V_{\phi, \psi, \pi}^i(s)} + \lambda \boxed{\nabla_{\eta^i} \sum_j \min\{0, \mathbb{E}_{\mathbf{m} \sim \phi}[Q_{\phi, \psi, \pi}^j(s, \mathbf{m})] - \mathbb{E}_{\mathbf{a} \sim \pi}[Q_{\phi, \psi, \pi}^j(s, \mathbf{a})]\}}.$$

Improve expected self-return

Increase the likelihood that its proposals are accepted by others

- The incentive-compatible constraints are **applied to the proposal policy only**.
- If a proposal is acceptable to others but does not benefit the ego agent, the **commitment policy is trained to reject non-profitable proposals**, reinforcing self-interest.

Empirical Results

Evaluated Methods

Centralized DCL: have full access to others' **actual** policies and critics.

- DCL: $\lambda = 0$.
- DCL-IC: $\lambda = 1$.

Decentralized DCL: need to **estimate** others' actual policies and critics.

- DecentralizedDCL: $\lambda = 0$.
- DecentralizedDCL-IC: $\lambda = 1$.

IPPO: each agent was trained independently with the proximal policy optimization (PPO).

Mediated-MARL: altruistic joint planner was trained to maximize the utilitarian social welfare.

MOCA: Each agent was trained to maximize self-interest, with a learnable transfer payment that directly modifies agents' rewards.

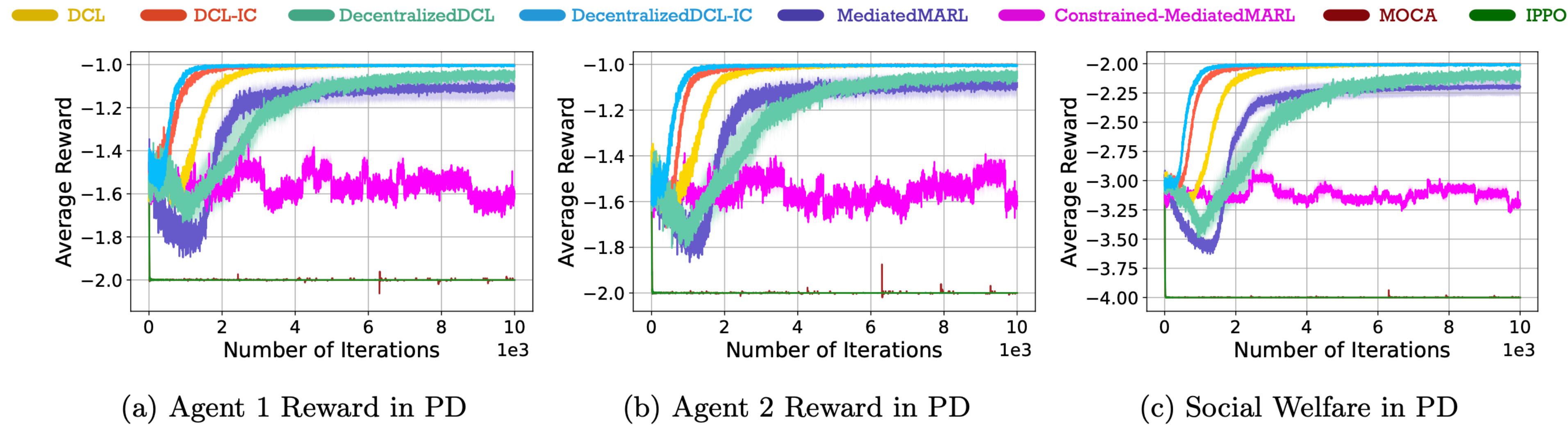


Figure 2: Prisoner's Dilemma: DCL v.s. Other Baselines

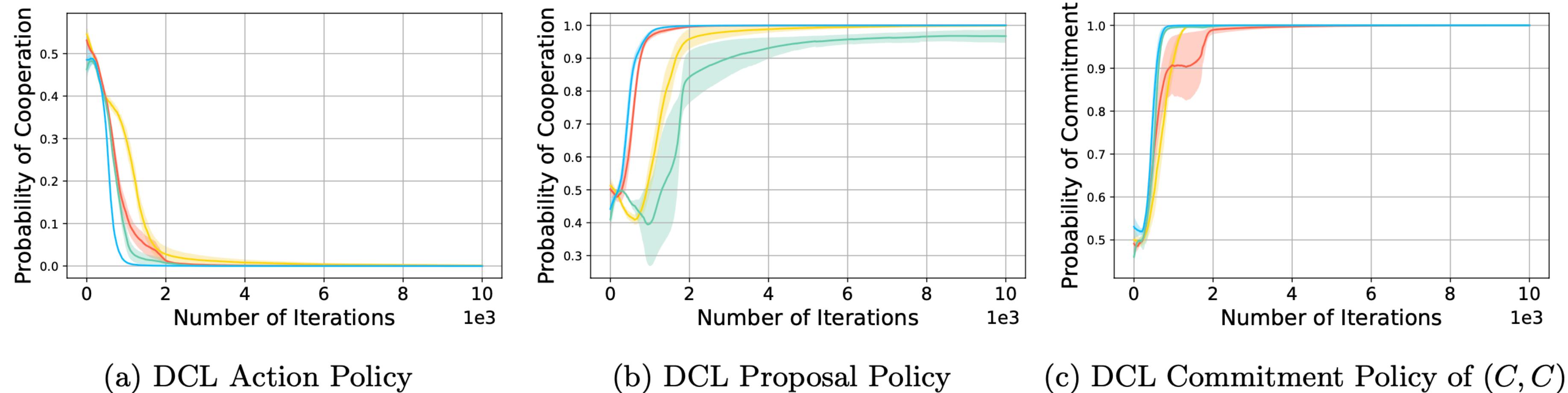


Figure 3: DCL Policies in Prisoner's Dilemma

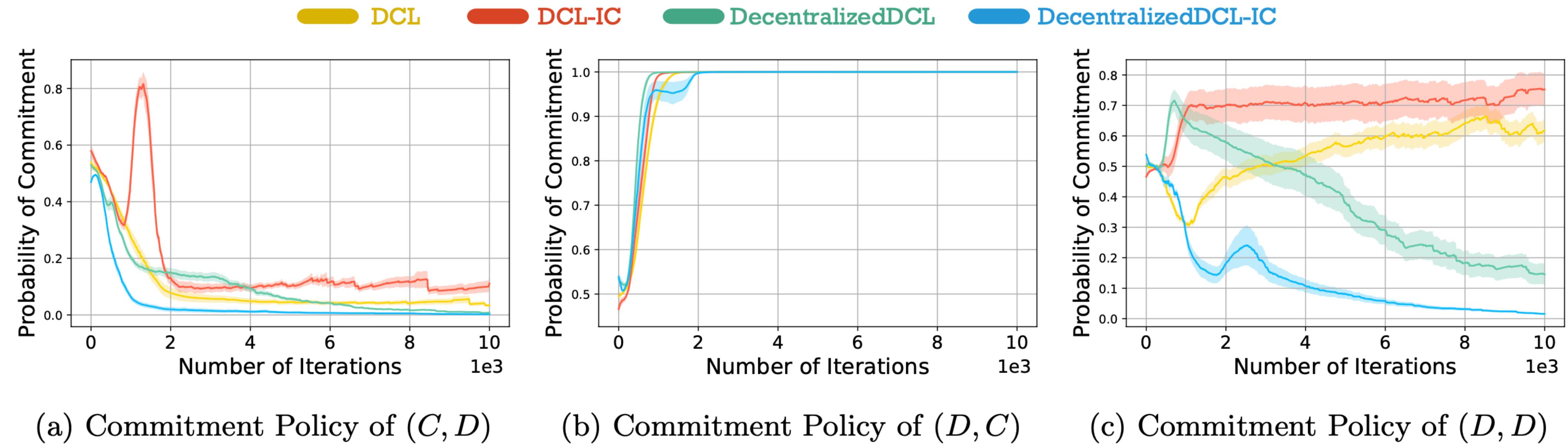


Figure 6: DCL Commitment Policies in Prisoner's Dilemma

DCL agents strategically accept beneficial agreements while rejecting disadvantageous ones.

Resilient against malicious agents who always propose defection.

Sequential Social Dilemma



Figure 4: Grid Game (Horizon=16): DCL v.s. Other Baselines.

Repeated Purely Conflicting Game

Table 2: Purely Conflicting Game

	A_1	A_2
A_1	(0,0)	(-1,2)
A_2	(2,-1)	(0,0)

Agents cannot establish **one-step** mutually beneficial agreements.

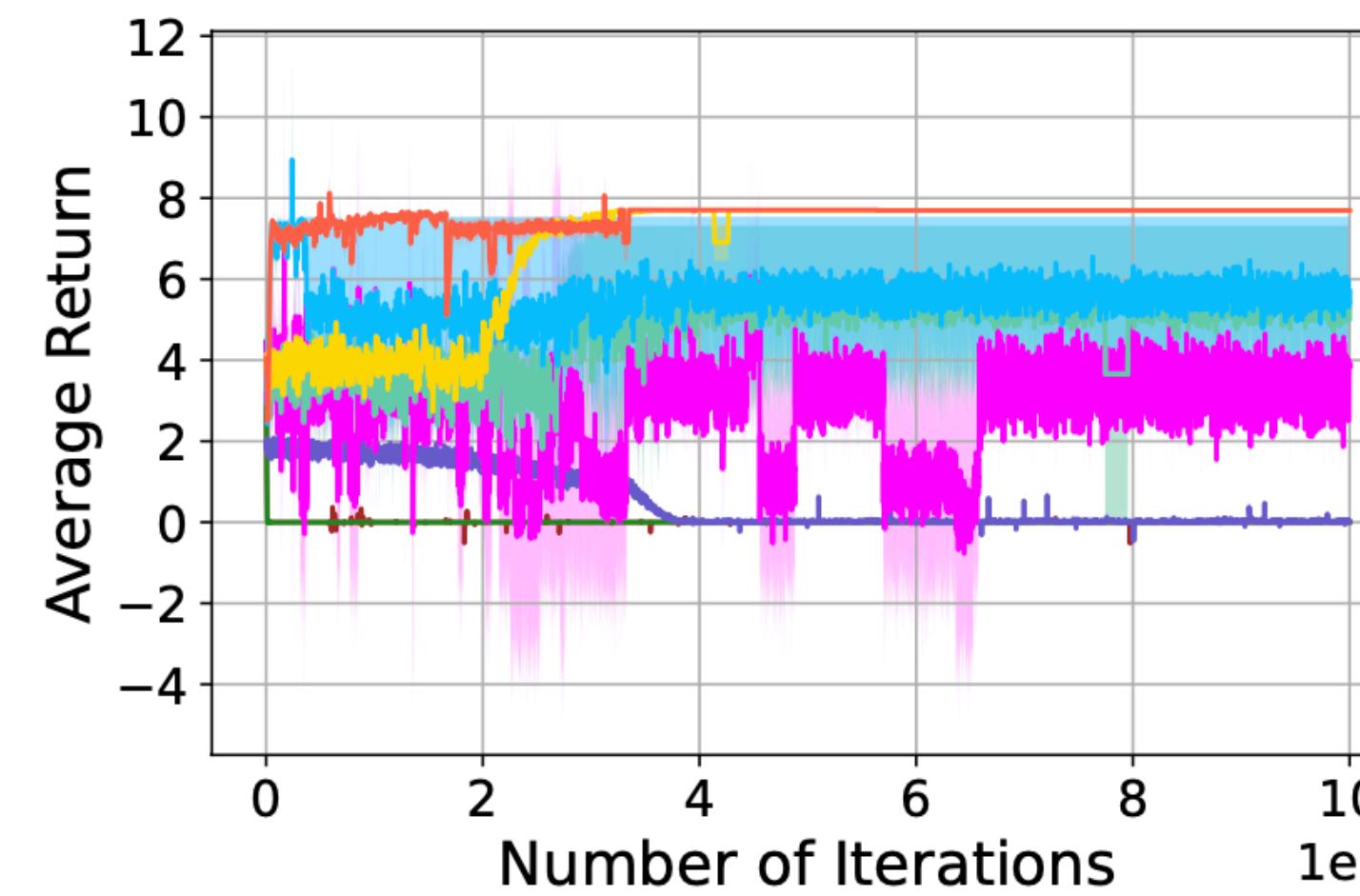
If agents can commit to actions over **multiple steps**, both can achieve positive long-term returns by committing to a **tit-for-tat** agreement.

extended DCL with **mega-step commitments**

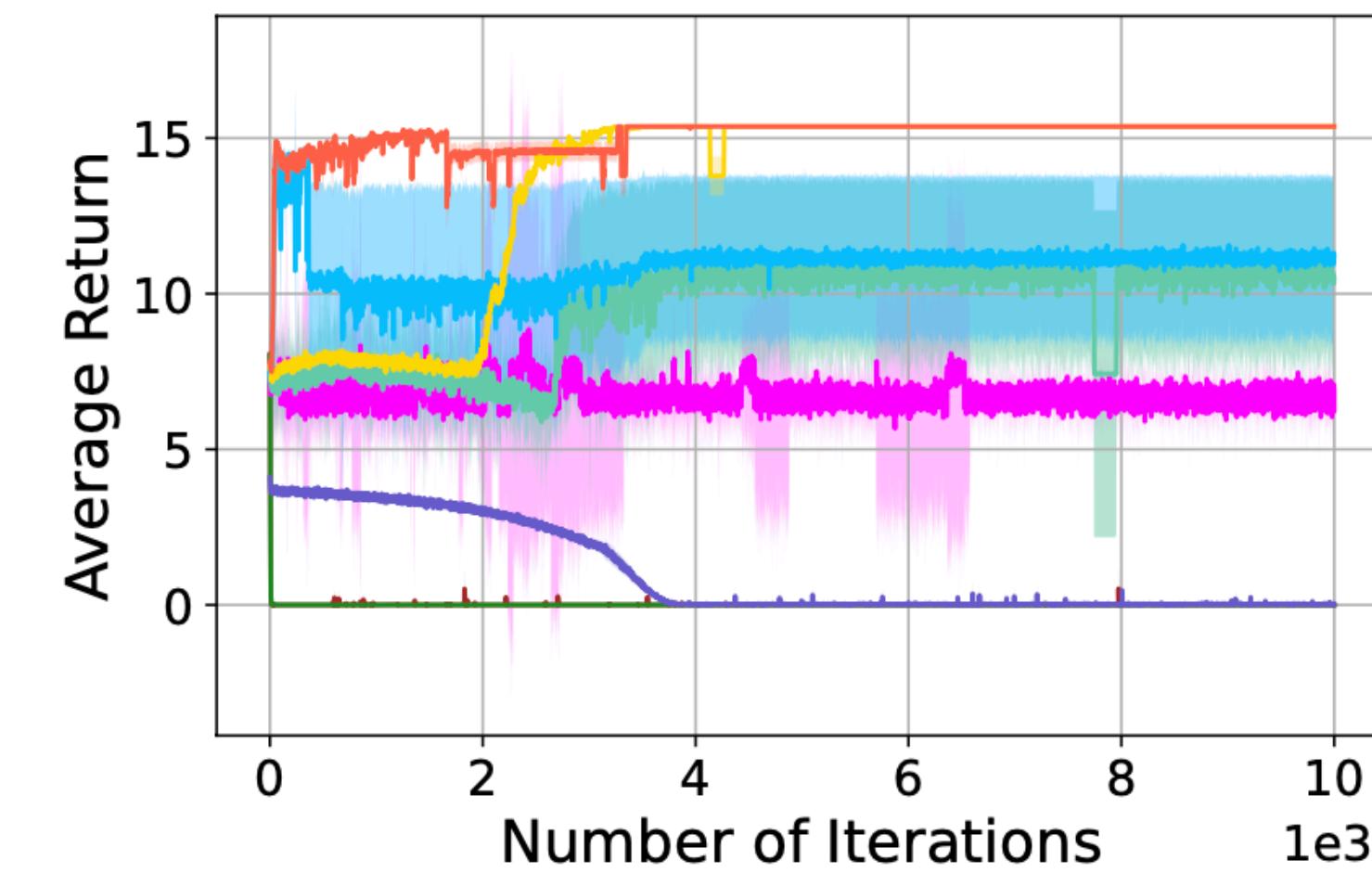
Repeated Purely Conflicting Game



(a) Agent 1 Return in RPC



(b) Agent 2 Return in RPC



(c) Social Welfare in RPC

Figure 5: Repeated Purely Conflicting Game (Horizon=16): DCL v.s. Other Baselines.

Take-home Messages

- Agents can achieve mutually beneficial outcomes by voluntarily committing to proposed actions in **MCGs**.
- **DCL** enables agents to learn strategic commitments by differentiating through self policies (direct effect) and others' policies (indirect effect).
- **Incentive-compatible learning** accelerates agreement formation by encouraging agents to propose agreements that will be accepted by others.
- **Mega-step commitments** can enhance long-term cooperation in some repeated purely competitive environments.