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Introduction

Cooperation Problems: The partial alignment and conflict of autonomous agents lead to mixed-motive
scenarios in many real-world applications. However, even if each agent individually is well aligned with
human values, they may fail to cooperate due to mixed interests, even when cooperation yields a better

outcome.
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Commitment Mechanism: If agents can make conditional commitment based on other agents’ policies,
cooperation may become an equilibrium even in highly conflicting environments.
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Objective: We aim to develop a learnable commitment protocol that allows self-interested agents to
strategically align their actions, thereby enhancing cooperation in mixed-motive multi-agent systems. This
approach also enhances the accuracy of value estimations and promotes stability during training. We
empirically showed that our method outperforms the baseline methods in multiple tasks.

Cooperation leads to a
higher payoff

Markov Commitment Games Framework

We introduce the Markov Commitment Games, a framework that allows self-interested agents to negotiate
future plans through voluntary commitments.

MCG = (N, S, T, (M, G, ', R)e s, 7).
A/ : The set of agents (players) in the game, indexed by i € /.
&': The state space, representing all possible states of the environment.
A": The proposal space of agent i.
&': The commitment space of agent i.
*: The action space of agent i, the joint action space is & = (& i)ie e
R': & X d — R: The reward function of agent i.

I 8 XA — A(S): The environment transition function, which satisfies the Markov property and
the stationarity condition, i.e., 7 (s, |5, a,) = T (8,41 |5, A, ..., 80 2y) = T (s'| 5, Q).

y: The discount factor.
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In an MCG, each agent i has three decisions to make at each time step, with the objective of maximizing
its expected cumulative return
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o Proposal policy (,b’;,- : 8§ - A(MD.

o Commitment policy y/é,. S X M — AB).

e Action policy, ﬂéi : S - A(LD).

Proposition 4.1.

Mutual cooperation is a Pareto-dominant Nash equilibrium in the MCG of the Prisoner's Dilemma.

Differentiable Commitment Learning Algorithm

Under the framework of MCGs, we propose differentiable commitment learning (DCL), which maximizes
agents’ expected self-interests while incorporating incentive-compatible constraints on their proposal
policies to encourage mutually beneficial agreements.

Given proposal policy qb,;,., commitment policy 1//2 and the action policy =, of each agent i in an MCG, the
gradients of the value function () w.r.t. ¢, ¢, n* are
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where Q. (s,a) = Efl),wr[z Y ls, = s,a,=a].
k=t

DCL enables agents to optimize strategies by considering both direct and indirect effects on their utilities.
« Direct impact: Agents differentiate through their own policies to maximize individual returns.
* Indirect impact: Agents anticipate how their decisions affect others’ commitments and, in turn, their own

outcomes—captured via differentiation through others’ commitment policies. _
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We further propose incentive-compatible learning to encourage agents to find mutually beneficial proposals.

Penalize Agent for Proposing Outcomes Agents Are Incentivized to Offer Encourage Mutually
Worse than Independent Actions for All Deals Acceptable to Others » Beneficial Proposals

Experiments

Evaluated Methods
DCL (Ours): Centralized and decentralized variants, with/without incentive-compatible constraints.
Independent PPO: Agents trained independently using PPO.
Mediated-MARL: Altruistic planner trained to optimize utilitarian social welfare.
MOCA: Self-interested agents with learnable transfer payments modifying rewards.

Evaluation Scenarios

* Prisoner’s Dilemma: Tabular social dilemma.

* Grid Game: Sequential social dilemma.

* Repeated Purely Conflicting Game: Iterated setting with strictly opposing interests.

Results
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Highlights of Results
Both centralized and decentralized DCL outperform all baselines across the three scenarios.
Incentive-compatible DCL converges faster than unconstrained DCL.
In the repeated pure conflict game, multi-step commitments enable agents to sustain positive returns
through tit-for-tat agreements.

Examples of Learned Policies (Prisoner’s Dilemma)

*  Without mutual commitment, DCL agents converge to mutual defection.

* With conditional commitment, agents propose and commit to mutual cooperation (probability — 1).

* DCL agents learn to accept mutually beneficial agreements and reject proposals that exploit them (e.g.,

co-player defects while they propose cooperation).
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(d) Action Policy (e) Proposal Policy (f) Commitment Policy of (C,C)
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Discussion

Scalability to Many-player Scenarios

In MCGs, the joint proposal space grows exponentially with the number of agents, which would inevitably

increase the computational complexity. To investigate how DCL handles scalability with many players, we

conducted additional experiments on an N-player public goods game.

* Most agents converge to propose contributions and commit to joint proposals that result in positive
individual welfare.

* These findings indicate that DCL scales well to many-player games, with the agreement rate of joint
proposals remaining stable (~0.99) as the number of agents increases.

Number of Agents Run Time (Hours) Agreement Rate Social Welfare
2 4 0.996 £ 0.002 0.997 £+ 0.002
3 7 0.994 + 0.001 1.491 £ 0.004
5 12 0.996 £+ 0.001 1.989 + 0.002
10 32 0.991 £ 0.001 3.659 £ 0.143

Robustness to Maliciously Irrational Agents
Robustness: DCL agents learn to accept mutually beneficial commitments and reject exploitative ones.
Adaptive Behavior: When paired with irrational or malicious agents who always propose defection, DCL
agents refuse harmful proposals.

Outcome: This behavior demonstrates DCL's robustness against malicious behavior by safeguarding self-
interest through strategic commitment.

Conclusion

Agents achieve mutually beneficial outcomes by voluntarily committing to proposed actions in MCGs.
DCL enables strategic commitment learning by differentiating through both self and others’ policies.
Incentive-compatible learning accelerates agreement formation by encouraging agents to propose
agreements that will be accepted by others.

Mega-step commitments enhance long-term cooperation in repeated competitive settings.

Limitations and Future Work

Sample Efficiency

« Limitation: On-policy updates are less sample efficient and challenging in decentralized settings.

* Future Work: Explore efficient, bias-robust training methods for decentralized multi-agent learning.
Complex Proposal Domain

 Limitation: Current proposals are limited to deterministic future actions.

* Future Work: Extend the framework to support stochastic or conditional commitments.
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